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Three-dimensional Rayleigh-Taylor incompressible turbulence is numerically studied with the Boussinesq
approximation. Our focus is on scaling properties of the moments of the density and the velocity differences
�structure functions�, which are directly measured from the numerical data. A comparison with the phenom-
enology proposed by Chertkov �Phys. Rev. Lett. 91, 115001 �2003�� is made. It is found that deviation from
the phenomenology �anomalous scaling or intermittency effect� of the density observed for high-order structure
functions is quite close to that of the passive scalar with a uniform mean scalar gradient advected by the
barotropic homogeneous isotropic turbulence.
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One of the most common ways to trigger turbulence in
nature is the Rayleigh-Taylor �RT� instability �1�: a heavy
fluid placed on top of a light fluid under the influence of
gravity is an unstable configuration. Where such a configu-
ration occurs inevitably, turbulent state �Rayleigh-Taylor tur-
bulence� follows, and its important consequences have been
studied, particularly, in subjects related to supernova explo-
sions �2� and inertial confinement fusion �3�.

What makes elucidation of the RT turbulence challenging
is that statistics of its fluctuations depend on time, which is
markedly different from conventional study on statistically
steady-state turbulence �4�. Nevertheless there is a universal
law about this time-dependent nature of RT turbulence. This
law states that the largest length scale of RT turbulence �here
called the mixing zone length L�t�, indicated in Fig. 1� grows
as the square of time,

L�t� = CFAgt2, �1�

as long as boundary effects are negligible �see, e.g., �5��.
Here A is the Atwood number, measuring the density differ-
ence between the top and bottom layers A= ��top
−�bottom� / ��top+�bottom�, g is the gravitational acceleration,
and CF is thought to be a universal constant. By using this
mixing zone length, L�t�, Chertkov developed a phenom-
enology of RT turbulence in the case of small density differ-
ences �6�. It predicts not only spatial but also temporal scal-
ings for the velocity and the density fluctuations in both two
and three spatial dimensions. Subsequent to this phenom-
enology, there has been a series of numerical studies regard-
ing the statistical properties of RT turbulence and its univer-
sality.

For the two-dimensional �2D� case, this prediction was
later confirmed through a numerical simulation by Celani et
al. �7�, and deviation from the phenomenological prediction
is observed in high-order statistics as expected. For the three-
dimensional �3D� case, the prediction for the velocity statis-
tics and its universality was extensively studied by Boffetta
et al. �8�, and the internal structure within the mixing zone

was studied by Vladimirova and Chertkov �9�. Employing a
method similar to those in �7,8�, we perform a numerical
simulation of RT turbulence in the three-dimensional space
and test the phenomenology �6�. Our main target is the sta-
tistics of the density. In particular we present them in a way
as simple as possible.

Chertkov’s phenomenology predicts for the 3D RT turbu-
lence that the velocity and density increments over distance r
in the inertial range at an equal time t obey the following
scaling laws in r and t:

�ru � �r�t�1/3r1/3 � uL�t�� r

L�t��1/3
� �Ag�2/3r1/3t1/3, �2�
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FIG. 1. �Color online� Left: horizontally averaged instantaneous
density profile. The direction of the gravity is from top to bottom.
The dashed line is the initial profile. The mixing zone length L�t� is
determined from the horizontally averaged density profile. Middle
3D plots of the instantaneous density in the whole computational
domain. High �low� density is coded red/gray �blue/dark�. Right:
the yellow/gray and blue/dark isosurfaces of the density correspond
values �=0.4,−0.4, respectively. Note that the upper density inter-
face at z=0.5, which is needed to conform to periodicity, does not
become turbulent.
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�r� � �r�t�1/2�r�t�−1/6r1/3 � ��� r

L�t��1/3

� ���Ag�−1/3r1/3t−2/3. �3�

Here it is assumed that the energy and density dissipation
rates at small length scale r become instantaneously equal to
those at the largest scale L�t� �adiabaticity�: �r�t���L�t�
�uL�t�3 /L�t� and �r�t���L�t������2 / t. And uL�t� is the
largest-scale velocity given by uL�t��L�t� / t, and ��=�top
−�bottom is the density difference at the largest scale. This is a
generalization of the statistically steady-state turbulence phe-
nomenology to that of the unsteady RT turbulence. Notice
that the temporal scalings in the rightmost-hand sides of Eqs.
�2� and �3� are the result of Eq. �1�. The first lines of Eqs. �2�
and �3� are actually independent on how L�t� grows in time.
We shall here calculate second-, fourth-, and sixth-order mo-
ments of �r� and �ru �structure functions� from the numeri-
cal simulation and compare their scaling exponents to the
prediction �Eqs. �2� and �3��. The emphasis is on anomalous
scaling, that is, how higher-order structure functions deviates
from the phenomenological prediction.

The initial condition in our numerical simulation is that
the velocity is zero everywhere u�x , t=0�=o, and the density
varies as a step function of the vertical coordinate z, ��x , t
=0�=�top�z�0� ,�bottom�z�0�. We consider the case that the
density difference is small, which amounts to small Atwood
number A	1 cases. We solve the equations with Boussinesq
approximation which is valid for small Atwood number
cases

�tu + �u · ��u = − �p + A�g + 
�2u, � · u = 0, �4�

�t� + �u · ��� = ��2� . �5�

Here the variables �p pressure, g gravitational acceleration, 

kinematic viscosity, and � density diffusivity� are suitably
normalized so that the initial density is now �=1�z�0� ,
−1�z�0�. The Atwood number is set as A=0.15. We assume
that 
 and � are the same for the top �z�0� and bottom �z
�0� fluids. The Prandtl number Pr=
 /�=1 is considered
here. The numerical scheme is a standard spectral method
with a fourth-order Runge-Kutta scheme for time advance-
ment. The alias error is removed by the phase-shift method.
The boundary condition is triply periodic in the domain size
�4��232� with grid points 25622048. We stop the simu-
lation when the mixing zone length reaches 0.75Lz, where Lz
is the vertical domain size. Ensemble average is taken over
20 different initial 2D random perturbations added to the
initial density interfaces. This simulation strategy is basically
the same as in �7,8�. Simulation with a smaller domain
�2��216� with 12821024 is also performed. Compari-
son between the two sizes suggests robustness of the results
presented here.

First of all, we check whether or not the t2 law �Eq. �1��
holds in our simulation since it is a key input for the phe-
nomenology. We define here the mixing zone length L�t� as a
z zone where −0.99��̄�z , t��0.99 ��̄�z , t� is the horizontally
averaged density, see Fig. 1�. The ensemble averaged mixing
zone length �L�t�	 is shown in the inset of Fig. 2. The t2

scaling law is hardly seen, a well-known effect of subdomi-
nant corrections �5,10�. Nevertheless it is estimated that the
effective scaling law is t1.3, which has an important conse-
quence when we discuss the temporal scaling of the structure
functions. In order to see whether or not the leading behavior
t2 exists, we apply the method proposed in Ref. �10� to our
data: if Eq. �1� holds for the ensemble-averaged mixing zone
length �L�t�	, then the graph of ��d /dt��L�t�	�2 / �4Ag�L�t�	�
becomes flat and its value is the constant CF in Eq. �1�.
Indeed as shown in Fig. 2 the graph becomes roughly flat in
the range 30� t�60. This implies that the t2 �Eq. �1�� is the
leading term there. Within this time range we shall later ana-
lyze a temporal scaling behavior of the structure functions.
Here the value the universal constant CF obtained from the
flat region in Fig. 2 is around 0.04 which is consistent to the
value 0.048 reported in �10� and 0.038 in �8�. However it is
quite different from the value 0.12 for the 2D case measured
in �7�.

Now we show in Fig. 3 the structure functions of the
density and the velocity as functions of spatial scale for a
fixed time. They are spatially averaged within the mixing
zone. Here the fixed time t=57.0 is chosen as roughly the
latest time when the indicator shown in Fig. 2 is flat �30
� t�60�. During this time range, the spatial scaling behavior
of the structure functions does not change but the spatial
inertial range broadens as the time elapses. For the second-
order moments, the scaling exponents of the density and the
velocity structure functions are close to the dimensional pre-
dictions �Eqs. �2� and �3��, which is the same result as �8�.
This supports the argument in Ref. �6� that the RT turbulence
in 3D obeys the Kolmogorov-Obukhov-Corrsin scaling, im-
plying that the density in the inertial range behaves as a
passive scalar. For the fourth and sixth orders, the scaling
exponents of the density structure functions deviate from the
phenomenology. Following the method in Ref. �7� for the 2D
RT turbulence case, we compare these anomalous scaling
exponents obtained here with those of the passive scalar with
a mean scalar gradient advected by steady, homogeneous,
and isotropic turbulences without the gravity effect �11�. As
shown in Fig. 3�a� the density scaling exponents in r ob-
served here are quite close to those calculated in Ref. �11� of
the passive scalar. In contrast, the scaling exponents of the
velocity obtained here do not clearly exhibit such agreement
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FIG. 2. �Color online� If the graph becomes flat, the flat value
corresponds to that of the constant CF in Eq. �1� �10�. Here �L�t�	 is
the ensemble averaged mixing zone length. Inset: �L�t�	 in log-log
scale. The effective scaling law of �L�t�	 is close to t1.3.
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with those of the homogeneous isotropic turbulence �for ex-
ample, with the exponent values given in Ref. �12��. The
possible reason for this may be that the inertial range is not
wide enough. In Ref. �8�, with the aid of the extended self
similarity �ESS� analysis, such agreement for the velocity is
firmly observed. Concerning the isotropy of the structure
functions as functions of r, we show the density structure
functions for the three different increments in Fig. 4. For the
vertical increments, we subtract the linear variation in z due
to the mixing zone growth ��� /L�t��z �mean density gradient
contribution�. It is seen that the scaling exponents in the
inertial range are rather close for the three directions. How-
ever difference in the dissipation range is enhanced for p
=4,6. For the longitudinal velocity structure functions, both
horizontal components �xux ,�yuy agree well but the horizon-
tal component �zuz is quite different from the two others
�figure not shown�.

Let us move to temporal scaling of the density and the
velocity structure functions. In Fig. 5 we plot the structure
functions as function of time t for a fixed spatial scale r
=1.23. This spatial scale within the inertial range is chosen
based both on the scaling range shown in Fig. 3 and on the
constancy of the kinetic-energy flux �figure not shown�. The
temporal scaling behavior does not change much for 1.0
�r�2.0. As already discussed, the “inertial range in time” is
expected for 30� t�60 �see the flat region in Fig. 1�. As

shown in Fig. 5 the density and the velocity structure func-
tions exhibit a reasonable scaling behavior during this time
range. The temporal scaling exponents for the density seen
here are at first sight different from the prediction �Eq. �3��.
However there is an interpretation of this. Remember that in
the derivation of Eq. �3� we have �r�����r /L�t��. We can
put the effective scaling law �L�t�	� t1.3 into this relation. As
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FIG. 3. �Color online� �a� Density structure functions ��x�
p	 as

functions of distance x along the horizontal x coordinate at fixed
time t=57.0. �b� Same as �a� but for longitudinal velocity structure
functions ��xux

p	, where ux is the x component of the velocity. Solid
lines for both panels represent the phenomenological predictions
�Eqs. �2� and �3��. Dashed lines represent the anomalous exponents
of the passive scalar with a mean scalar gradient obtained in �11�
and of the homogeneous isotropic turbulent velocity in �12�.
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FIG. 4. �Color online� Density structure functions for horizontal
�x ,y� and vertical �z� increments at fixed time t=57.0. For the ver-
tical ones, the density variations due to the mean gradient �� /L�t�
are subtracted. Longer curves correspond increments along z direc-
tion. �Graphs are suitably shifted in the ordinate direction.�
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FIG. 5. �Color online� �a� Density structure functions ��x�
p	 as

functions of time at the fixed spatial scale x=1.23. Solid lines rep-
resent the phenomenological predictions. Dashed lines represent ex-
ponents −1.3�p�p=2,4 ,6�, where 1.3 is the effective scaling expo-
nent of the mixing zone length L�t� �see Fig. 1� and �p are the
anomalous exponents of the passive scalar structure functions with
a uniform mean scalar gradient obtained in �11�. �b� Same as �a� but
for longitudinal velocity structure functions ���xux�p	. Here dashed
lines represent fits by eyes �1.0�p=2� ,2.1�p=4� ,3.3�p=6��.
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a result the temporal exponents of the density structure func-
tions of all p’s presented here agree with the relation
���r��p	�����p�r /L�t���p � t−1.3�p. Here 1.3 is the effective
temporal scaling exponent of �L�t�	 and �p is the anomalous
scaling exponents of the pth-order structure functions of the
passive scalar with a mean scalar gradient advected by the
barotropic homogeneous isotropic turbulence ��2=0.578,�4
=0.822,�6=0.950� �11�. This agreement suggests ���r��p	
� �r /L�t���p. For the second order, the exponent �2 is not very
far away from the phenomenological prediction �r /L�t��2/3. It
is hence safe to say that the phenomenology �Eq. �3�� holds
for the second-order moment. For the fourth- and sixth-order
moments, deviation from the phenomenology �Eq. �3�� is
clearly observed. The point is that how they deviate is quite
similar to that of the passive scalar problem �13�, namely, the
saturating behavior of the exponents. Also this result indi-
cates that the temporal scaling of the density structure func-
tion ���r��p	 is involved only through L�t�, which may be
support of the adiabaticity assumption made in the phenom-
enology �6� at least for the density. We point out lastly that
using the effective exponent 1.3 is the same as plotting the
structure functions for fixed r as a function of the mixing
zone length �L�t�	, as is done in Ref. �7�.

For the temporal exponents of the velocity structure func-
tions, they differ again from the dimensional prediction �Eq.
�2�� even for the second order p=2. The second-order data
grow close to t1, which is rather different from the phenom-
enological prediction t2/3. This t1 scaling does not change if
we change the spatial scale range in 1�r�2. For the veloc-
ity, the interpretation by using the effective scaling law
�L�t�	� t1.3 and the anomalous exponent of the homogeneous
isotropic turbulence velocity �p does not work: ���ru�p	
�uL

p�t��r /L�t���p � t1.3�p−�p�−p give negative temporal expo-
nents for p=2,4 ,6. However in Ref. �8� they observed in the
Fourier space that the velocity temporal scaling exponent is
t2/3 for p=2, which is consistent with the phenomenology. So

far we do not have an explanation for these velocity temporal
exponents observed here.

We draw conclusions from the numerical data about the
structure functions, in particular about the density in the mix-
ing zone. The density field of the 3D RT turbulence, which is
not at all a passive scalar advected by a steady turbulent
velocity, behaves in the same way as the passive scalar with
a uniform mean scalar gradient advected by statistically
steady homogeneous and isotropic turbulences. An interest-
ing point in this correspondence is that the scalar mean gra-
dient for the RT turbulence is given by �� /L�t�, which is
dependent on time. In Ref. �6� Chertkov pointed out that the
Kraichnan model analysis �14� of the passive scalar with
time-dependent statistics may be useful in understanding RT
turbulence. Our result suggests that a way to incorporate this
time-dependence is to consider a Kraichnan model of a pas-
sive scalar with a time-dependent mean scalar gradient
�� / t��L�t�� t��. The �=2 case corresponds formally to RT
turbulence. It is also theoretically interesting to study a gen-
eral exponent case �.

Recently in Ref. �8� the velocity field of RT turbulence in
the mixing zone is found to have the same scaling property
as the velocity of statistically steady homogeneous and iso-
tropic turbulences. We report that the same analogy holds
between the density and the passive scalar. It is remarkable
that the anomalous scaling exponents of both the velocity
and the density of small Atwood number RT turbulence co-
incide with those of the velocity and the passive scalar of 3D
homogeneous isotropic turbulence.
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Spun from Universality and Emergence” and the Grant-in-
Aid for Exploratory Research No. 19654014 from the Japa-
nese Ministry of Education.
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